

## EUROPEAN OLYMPIAD OF EXPERIMENTAL SCIENCE LUXEMBOURG

Task 1

## **ANSWER SHEET**

# CANCER

EOES 2024, 09.04.2024

Team (Country + A/B)

Students:

### **Problem 1 – Quantification of Fe<sup>2+</sup> ions (27 points)**

Step 1: Generating a calibration curve for Fe<sup>2+</sup> in mg/L

## • <u>Table 1.1.1.:</u> Fill in the following table and detail your calculations for the first line. (4P + 2P)

| β(Fe <sup>2+</sup> )<br>(mg/L) | V(A)<br>(mL) | V(B)<br>(mL) | V(H <sub>2</sub> O)<br>(mL) | V(buffer)<br>(mL) | V(o-<br>phenanthroline)<br>(mL) |
|--------------------------------|--------------|--------------|-----------------------------|-------------------|---------------------------------|
| 12.0                           |              |              |                             | 5.00              | 1.00                            |
| 10.0                           |              |              |                             | 5.00              | 1.00                            |
| 5.00                           |              |              |                             | 5.00              | 1.00                            |
| 1.50                           |              |              |                             | 5.00              | 1.00                            |
| 1.00                           |              |              |                             | 5.00              | 1.00                            |
| 0.500                          |              |              |                             | 5.00              | 1.00                            |
| 0.250                          |              |              |                             | 5.00              | 1.00                            |
| 0                              |              |              |                             | 5.00              | 1.00                            |

Detailed calculation for the first line:

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

Step 2: Colorimetric determination of the concentration of an Fe<sup>2+</sup> solution

• Table 1.2.1.: Measured absorbances A at  $\lambda$  = 492 nm (3P)

| $\beta$ (Fe <sup>2+</sup> ) | Λ |
|-----------------------------|---|
| (mg/L)                      | А |
| 12.0                        |   |
| 10.0                        |   |
| 5.00                        |   |
| 1.50                        |   |
| 1.00                        |   |
| 0.500                       |   |
| 0.250                       |   |
| 0                           |   |

• Question 1.2.2: Measured absorbance A at  $\lambda$  = 492 nm for sample F3

• Graph 1.2.3: Draw a calibration graph (plot the absorbance against the mass concentration) on graph paper. (4P for the graph)

Label the graph paper using the corresponding sticker.

Question 1.2.4.: Determine the mass extinction coefficient (ε<sub>m</sub>) from the graph using the Lambert-Beer law and calculate the molar extinction coefficient (ε) (M(Fe)=55.85 g/mol). Write your calculation details in the box below and add your details to the graph (1.2.3.). (3P)

<u>(! For the calculations in points 1.2.4 to 1.2.8, indicate your final results using the scientific</u> notation with 2 decimal places (example:  $1.23 \cdot 10^{-5}$ )



#### • Question 1.2.5.: Calculate the molar extinction coefficient ( $\varepsilon$ ) using the Lambert-Beer Law and one of your measured values. Show your calculation details. (2P)

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |

• Question 1.2.6: Determine the mass concentration of the unknown sample solution F3 ( $\beta_{F3}$ ) graphically from the calibration curve (Graph 1.2.3.) and calculate its molar concentration ( $c_{F3}$ ). Show details on the graph paper and write the mass concentration and the calculation details for  $c_{F3}$  in the box below. (2P)

| Marks |
|-------|
|       |
|       |
|       |
|       |

 Question 1.2.7: Calculate the molar concentration of the unknown sample solution F3 (c<sub>F3</sub>) using the molar extinction coefficient! Show your calculation details. (2P)

| Marks |
|-------|
|       |
|       |
|       |
|       |

• Question 1.2.8: Calculate the corresponding molar concentrations  $c_{F2}$  an  $c_{F1}$  of the solutions F2 and F1. Show your calculation details. (5P)

| <u>Marks</u> |
|--------------|
|              |
|              |
|              |
|              |
|              |
|              |
|              |

### Problem 2 – Solve the carcinogen chaos (23 points)

#### • Table 2.1.1.: Fill in the following table with your observations for the CAN test (2.5P)

| substance | Observation: formation of a red complex?<br>Use the following symbols: $\checkmark \rightarrow$ Yes and $X \rightarrow$ No |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| control   |                                                                                                                            |
| X1        |                                                                                                                            |
| X2        |                                                                                                                            |
| X3        |                                                                                                                            |
| X4        |                                                                                                                            |

## • Table 2.1.2.: Fill in the following table with your observations for the FeCl<sub>3</sub> test (2.5P)

| substance | Observation: colour of the solution changes?<br>Use the following symbols: $\checkmark \rightarrow$ Yes and $X \rightarrow$ No |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| control   |                                                                                                                                |
| X1        |                                                                                                                                |
| X2        |                                                                                                                                |
| X3        |                                                                                                                                |
| X4        |                                                                                                                                |

#### • <u>Table 2.1.3.: Fill in the following table with your observations for the Brady test</u> (2.5P)

| substance | Observation: formation of a yellow to red precipitate?<br>Use the following symbols: $\checkmark \rightarrow$ Yes and $X \rightarrow$ No |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| control   |                                                                                                                                          |
| X1        |                                                                                                                                          |
| X2        |                                                                                                                                          |
| X3        |                                                                                                                                          |
| X4        |                                                                                                                                          |

#### • <u>Table 2.1.4.: Fill in the following table with your observations for the Fehling test</u> (2.5P)

| substance | Observation: formation of a brick red precipitate?<br>Use the following symbols: $\checkmark \rightarrow$ Yes and $X \rightarrow$ No |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| control   |                                                                                                                                      |
| X1        |                                                                                                                                      |
| X2        |                                                                                                                                      |
| X3        |                                                                                                                                      |
| X4        |                                                                                                                                      |

• Table 2.1.5.: Assign the unknown substances to their correct labels (X1 – X4).

| substance | Correct label |
|-----------|---------------|
| H O       |               |
| ОН        |               |
| Но ОН     |               |
|           |               |

• Question 2.1.6.: Formulate the reaction scheme for the reaction of the given ketone with the Brady reagent (2P).

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

#### • <u>Table 2.1.7.: Do the presented natural fragrances show a reaction with the presented</u> <u>tests?</u>

|            | CAN test | FeCl <sub>3</sub> test | Brady test | Fehling test |
|------------|----------|------------------------|------------|--------------|
| citronella |          |                        |            |              |
|            |          |                        |            |              |
|            |          |                        |            |              |
| thymol     |          |                        |            |              |
| ОН         |          |                        |            |              |
| limonene   |          |                        |            |              |
|            |          |                        |            |              |
| carvone    |          |                        |            |              |
|            |          |                        |            |              |
| menthol    |          |                        |            |              |
| ОН         |          |                        |            |              |

Use the following symbols:  $\checkmark \rightarrow$  Yes and  $x \rightarrow$  No (3P)



### **Problem 3: Ionizing radiation**

#### Problem 3.1: Evidence for the existence of radon (23 points)

#### • <u>Table 3.1.1.: Background activity A<sub>0</sub> (1P)</u>

|                              | Mean                         |                              |                             |
|------------------------------|------------------------------|------------------------------|-----------------------------|
| A <sub>01</sub> (counts/min) | A <sub>02</sub> (counts/min) | A <sub>03</sub> (counts/min) | A <sub>0</sub> (counts/min) |
|                              |                              |                              |                             |

#### o Table 3.1.2.: Activity as a function of time (8P)

|       | Mea            | Mean           | Effective      |                  |                                    |
|-------|----------------|----------------|----------------|------------------|------------------------------------|
|       |                |                |                |                  | activity                           |
| t     | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | A <sub>mes</sub> | A=A <sub>mes</sub> -A <sub>0</sub> |
| (min) | (counts/min)   | (counts/min)   | (counts/min)   | (counts/min)     | (counts/min)                       |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |
|       |                |                |                |                  |                                    |

#### • Graph 3.1.3.: Activity as a function of time (5 P)

On a sheet of graph paper, create a plot of the activity A as a function of time t for your balloon. Label the graph paper using the corresponding sticker.

#### o Question 3.1.4. (3P)

| Half-life t <sub>1/2</sub> |
|----------------------------|
|                            |

#### ○ Question 3.1.5. Tick (✓) the cell(s) under the different nuclei. (2P)

| Po-218 | Pb-214 | Bi-214 | Po-214 | Pb-210 | Bi-210 | Po-210 | Pb-206 |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        |        |        |        |        |        |

#### o **Question 3.1.6. (2P)**

| Balloon with<br>diameter | d1  | d <sub>2</sub> | d <sub>3</sub> |
|--------------------------|-----|----------------|----------------|
| Number of counts/min     | 100 |                |                |

#### • Question 3.1.7. Tick ( $\checkmark$ ) the cell(s) under the different nuclei. (2P)

| Po-218 | Pb-214 | Bi-214 | Po-214 | Pb-210 | Bi-210 | Po-210 | Pb-206 |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        |        |        |        |        |        |

#### Problem 3.2: Law of distance (15 points)

#### • Table 3.2.1.: Dark current (1 P)

Current intensity in the dark ( $\mu$ A):  $I_0 =$  \_\_\_\_\_

#### • Table 3.2.2.: Intensity as a function of distance (6P)

| d (cm)           | Ι (μΑ)               | <i>I<sub>L</sub></i> (μΑ) | $1/d^2$ (cm <sup>-2</sup> ) |
|------------------|----------------------|---------------------------|-----------------------------|
| Distance between | Intensity of current | Intensity of current      |                             |
| lamp and         | through              | due to lamp light         |                             |
| phototransistor  | phototransistor      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |
|                  |                      |                           |                             |

#### • Graph 3.2.3.: Intensity as a function of $1/d^2$ (4P)

On a sheet of millimeter graph paper create a plot of  $I_L$  as a function of  $1/d^2$ . Draw a line through the measurement points in Graph 3.2.3. but only through the points that in a first approximation fulfil the quadratic law of distance. Use the provided **graph paper** and **label it with the correct sticker (Graph 3.2.3.)**. Determine the minimum value  $d_{min}$  for which the quadratic law of distance holds. Insert the value in <u>Table</u> 3.2.4

| 0 | Table 3.2.4.: Minimum distance for which the quadratic law of distanced ho | lds |
|---|----------------------------------------------------------------------------|-----|
|   | <u>2P)</u>                                                                 |     |

*d<sub>min</sub>=\_\_\_\_* 

#### • Question 3.2.5. $\checkmark \rightarrow$ Yes (2P)

If instead of a point-like source, you were to use a planar light source and a detector pointing towards the plane, which of the following statements would be true? Tick ( $\checkmark \rightarrow Yes$ ) the correct cells!

| The intensity would decay slower than with a point-like source    |  |
|-------------------------------------------------------------------|--|
| The intensity would decay faster than with a point-like source    |  |
| The decay of the intensity is the same as for a point-like source |  |

#### Problem 3.3.: Absorption of radiation (12 points)

| N                | Ι (μΑ)               | <i>I</i> <sub>L</sub> (μΑ) |
|------------------|----------------------|----------------------------|
| Number of plates | Intensity of current | Intensity of current       |
|                  | through              | due to lamp light          |
|                  | phototransistor      |                            |
| 0                |                      |                            |
| 1                |                      |                            |
| 2                |                      |                            |
| 3                |                      |                            |
| 4                |                      |                            |
| 5                |                      |                            |
| 6                |                      |                            |
| 7                |                      |                            |
| 8                |                      |                            |
| 9                |                      |                            |
| 10               |                      |                            |

#### • Table 3.3.1.: Intensity as a function of the number of plates (3P)

#### o Graph 3.3.2.: Intensity as a function of the number of plates (3P)

On a sheet of graph paper, create a plot of  $I_L$  as a function of N, insert the extrapolation for the determination of  $N_{1/2}$ . Label the graph paper using the corresponding sticker.

o Question 3.3.3. (1P)

N<sub>1/2</sub>

#### • **Question 3.3.4.: (3P)**

Sort the materials from 1 to 4 by how strongly they absorb gamma radiation. Mark the best absorber with 1 and the worst with 4.

| Iron  |  |
|-------|--|
| Lead  |  |
| Glass |  |
| Air   |  |

#### Question 3.3.5. Tick (✓) the correct cell(s). (2P)

Imagine that a material for shielding radioactive radiation has a thickness  $D_{1/2} = 2 cm$  for absorbing half the radiation. Which of the following thicknesses is sufficient to reduce the radiation to less than 5% of its initial value?

| 8 cm  |  |
|-------|--|
| 9 cm  |  |
| 7 cm  |  |
| 10 cm |  |



### Problem 4 – Effect of UV light on cell growth (16 points)

#### 4.1 Experimental set-up and UV exposure

• <u>Question 4.1.1.: Show your steps of the theoretical calculation. Round to one</u> <u>decimal place. (2P)</u>

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |

• **Question 4.1.2: Measured OD before the treatment:** 

#### 4.2. Growth analysis by determination of OD600nm

• Table 4.2.1.: Fill in the table (4 P)

|             | 0' | 30 ʻ | 60' | 90'         | Marks |
|-------------|----|------|-----|-------------|-------|
| OD sample 1 |    |      |     |             |       |
| OD sample 2 |    |      |     |             |       |
| OD sample 3 |    |      |     |             |       |
| OD sample 4 |    |      |     |             |       |
|             |    |      |     | Total marks |       |

## • Graph 4.2.2.: Using the graph paper provided draw the four different growth curves. (8 P)

Label the graph paper using the corresponding sticker.

#### • Question 4.2.3.: Optical density (1 P)

| Letter(s) (A, B, C, D) | Marks |
|------------------------|-------|
|                        |       |

Why is the optical density (OD) measured at 600 nm? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark.

- A The wavelength minimizes damage to the bacteria
- B The wavelength favours the growth of bacteria
- C A lower wavelength would not penetrate the solution
- D 600nm corresponds to the absorbance of proteins

#### • Question 4.2.4.: Sun protection factor (1 P)

| Letter(s) (A, B, C, D, E) | Marks |
|---------------------------|-------|
|                           |       |

What does SPF 50 mean? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark.

- A The skin is completely protected from UV radiation for 50 minutes
- B It allows only 2% of UV to pass through
- C It is the max sun protection we can use
- D It allows 50% UV to pass through after 1 hour
- E 50 corresponds to the concentration of titan dioxide

### Problem 5 – Effect of UV exposure on genetic material (34 points)

#### 5. Effect of UV exposure on genetic material

#### 5.1. Cell counting

#### • Question 5.1.1.: Counting slide set up (1P)

0.5 penalty points for using a  $2^{nd}$  try

| 1st try | 2 <sup>nd</sup> try | Validated | Marks |
|---------|---------------------|-----------|-------|
|         |                     |           |       |
|         |                     |           |       |
|         |                     |           |       |

#### • **Question 5.1.2.: Picture of counting slide.**

if no stamp present, then only a maximum of 1.5 P possible for 5.1.3

| Г |       |       | 1 | Marks |
|---|-------|-------|---|-------|
|   | Stamp | Time: |   |       |
|   |       |       |   |       |
|   |       |       |   |       |
|   |       |       |   |       |
|   |       |       |   |       |
| L |       |       |   |       |

#### • <u>Table 5.1.3.: Report your cell counting results in the table below. Round to</u> one decimal place for the average. (3P)

| Count                        | Cells per<br>grid 1 | Cells per<br>grid 2 | Cells per<br>grid 3 | Cells per<br>grid 4 | Cells per<br>grid 5 | Average | Marks |
|------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------|-------|
| Number<br>of living<br>cells |                     |                     |                     |                     |                     |         |       |
| Number<br>of dead<br>cells   |                     |                     |                     |                     |                     |         |       |
| Total marks                  |                     |                     |                     |                     |                     |         |       |

## • Question 5.1.4.: What is the percentage of living cells? Round to one decimal place. (2P)

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |

#### • Question 5.1.5.: What is the concentration of living cells in your tube "HC"? Round to two decimal places (5P)

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |

#### • Question 5.1.6.: What is the total number of living cells in your tube "HC"? Round to two decimal places (1P)

| Marks |
|-------|
|       |
|       |
|       |
|       |
|       |

#### 5.2. Extraction of genetic material

#### • Question 5.2.1.: What is the role of the PM solution? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

Letter(s) (A, B, C, D) Marks

- A To break down the cell membrane of the bacteria
- B To uncoil the DNA for the next step of the procedure
- C To prevent any damage to the DNA during the heating process
- D To amplify the DNA

#### • <u>Table 5.2.2.: Write down the DNA concentration and OD260/OD280 ratio</u> <u>measured with the help of the Nanodrop (3 P)</u>

| DNA concentration | OD260/OD280 ratio | Stamp & signature of supervisor |
|-------------------|-------------------|---------------------------------|
| 1                 |                   |                                 |
| 2                 |                   |                                 |
| 3                 |                   |                                 |
|                   |                   |                                 |
| 4                 |                   |                                 |
| Total marks       |                   |                                 |

#### 5.3 Preparation of samples for PCR

#### o Table 5.3.1.:

Calculate the volume of DNA and water that is required to have 400 ng of DNA in a 20  $\mu$ L solution. Measure the DNA concentration afterwards using the Nanodrop. Round to one decimal place (4P)

|             | Required DNA<br>volume (µL) | Required water<br>volume (µL) | Measured DNA<br>concentration<br>(ng/µL) | Stamp &<br>Signature of<br>supervisor |
|-------------|-----------------------------|-------------------------------|------------------------------------------|---------------------------------------|
| Sample 1    |                             |                               |                                          |                                       |
| Sample 2    |                             |                               |                                          |                                       |
| Sample 3    |                             |                               |                                          |                                       |
| Sample 4    |                             |                               |                                          |                                       |
| Total marks |                             |                               |                                          |                                       |

#### 5.4. Preparation for gel electrophoresis

#### • Question 5.4.1.: What's the role of the loading dye? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1 P)

- A Make the sample visible in the gel
- B Facilitate the entry of the DNA in the agarose gel
- C It's a DNA staining dye
- D Keep the DNA at the bottom of the gel wells
- E Protect the DNA from the electrical current

Letter(s) (A, B, C, D, E)

Marks

#### • Question 5.4.2.: Loading of the gel electrophoresis (4P)

|                                       |             | 1 | Marks |
|---------------------------------------|-------------|---|-------|
| Stamp                                 | Start Time: |   |       |
| Gel electrophoresis has been started. |             |   |       |
|                                       |             |   |       |
|                                       |             |   |       |
|                                       |             |   |       |
|                                       |             |   |       |
|                                       |             |   |       |
|                                       |             | ] |       |

#### 5.5. Analysis of PCR results

#### • Question 5.5.1.: Gel migration drawing (5P)

|                                      | Marks |
|--------------------------------------|-------|
| <b>Stamp</b><br>Gel drawing has been |       |
| given to the supervisor              |       |
|                                      |       |
|                                      |       |
|                                      |       |

Question 5.5.2.: What will happen to the signals on the gel if you increase the volume of starting material in step 2, Problem 4.2? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

- A The signals on the gel will appear similar to the one you observe on the official result
- B The signals on the gel will appear stronger
- C The signals on the gel will appear lower
- D It will depend on the volumes used
- E It will depend on the cell concentration

Letter(s) (A, B, C, D, E) Marks

#### Question 5.5.3.: What will be observed in position X if you expose the bacteria for 40 minutes to UV radiation? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

- A The signal on the gel will appear similar to the one you observe on the official result
- B The signal on the gel will appear stronger
- C The signal on the gel will appear lower

| Letter(s) (A, B, C) | Marks |
|---------------------|-------|
|                     |       |

#### Question 5.5.4.: What could be observed for sample 3 if we would have used a sunscreen with a lower SPF such as SPF 15? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

- A The signal on the gel would have appeared similar to the one you observe on the official result
- B The signal on the gel would have appeared stronger
- C The signal on the gel would have appeared lower
- D The signal on the gel would have completely disappeared
- E It depends on the brand of the sunscreen

| Letter(s) (A, B, C, D, E) | Marks |
|---------------------------|-------|
|                           |       |

# • Question 5.5.5.: How could you explain the result observed with sample 2? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

- A UV radiation induce unspecific mutations on the whole DNA strain preventing any recognition of the DNA sequence by the PCR primers
- B UV radiation induce nucleotide dimer formation preventing DNA reading by polymerase
- C UV radiation induce high denaturation of the cell DNA preventing DNA polymerisation
- D UV radiation depolymerize the DNA sequence
- E UV radiation impair the cell division

| Letter(s) (A, B, C, D, E) | Marks |
|---------------------------|-------|
|                           |       |

### APPENDIX - 5.5.1. Expected PCR results

Draw the expected result of the gel electrophoresis.



#### Legend:

L: Ladder

1: Negative control without DNA 2: sample 1 (no UV exposure) 3: sample 2 (15 min UV exposure) 4: sample 3 (sunscreen SPF 50 + 15 min UV exposure) 5: sample 4 (body lotion + 15 min UV exposure)

