

2
EUROPEAN OLYMPIAD OF 0

EXPERIMENTAL SCIENCE

2

 LUXEMBOURG4

Task 1

ANSWER SHEET

CANCER

\qquad
\qquad
\qquad
\qquad

Problem 1 - Quantification of Fe^{2+} ions (27 points)

Step 1: Generating a calibration curve for Fe^{2+} in mg / L

- Table 1.1.1.: Fill in the following table and detail your calculations for the first line. (4P + 2P)
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\beta\left(\mathrm{Fe}^{2+}\right) \\
(\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}V(\mathrm{~A}) \\
(\mathrm{mL})\end{array} & \begin{array}{c}V(\mathrm{~B}) \\
(\mathrm{mL})\end{array} & \begin{array}{c}V\left(\mathrm{H}_{2} \mathrm{O}\right) \\
(\mathrm{mL})\end{array} & \begin{array}{c}V(\text { buffer }) \\
(\mathrm{mL})\end{array} & \begin{array}{c}V(o- \\
\text { phenanthroline) } \\
(\mathrm{mL})\end{array}
$$

\hline 12.0 \& \& \& 5.00 \& 1.00\end{array}\right]\)| 1.00 |
| :---: |
| 10.0 |
| 5.00 |
| 1.50 |

Detailed calculation for the first line:
\square

Step 2: Colorimetric determination of the concentration of an Fe^{2+} solution

- Table 1.2.1.: Measured absorbances A at $\lambda=492 \mathrm{~nm}$ (3P)

$\beta\left(\mathrm{Fe}^{2+}\right)$ $(\mathrm{mg} / \mathrm{L})$	A
12.0	
10.0	
5.00	
1.50	
1.00	
0.500	
0.250	
0	

- Question 1.2.2: Measured absorbance A at $\lambda=492 \mathrm{~nm}$ for sample F 3

- Graph 1.2.3: Draw a calibration graph (plot the absorbance against the mass concentration) on graph paper. (4P for the graph)
Label the graph paper using the corresponding sticker.
- Question 1.2.4.: Determine the mass extinction coefficient $\left(\varepsilon_{m}\right)$ from the graph using the Lambert-Beer law and calculate the molar extinction coefficient (ε) ($\mathrm{M}(\mathrm{Fe})=55.85 \mathrm{~g} / \mathrm{mol})$. Write your calculation details in the box below and add your details to the graph (1.2.3.). (3P)
(! For the calculations in points 1.2.4 to 1.2.8, indicate your final results using the scientific notation with 2 decimal places (example: $1.23 \cdot 10^{-5}$)

	Marks

- Question 1.2.5.: Calculate the molar extinction coefficient (ε) using the LambertBeer Law and one of your measured values. Show your calculation details. (2P)

- Question 1.2.6: Determine the mass concentration of the unknown sample solution F3 ($\beta_{F 3}$) graphically from the calibration curve (Graph 1.2.3.) and calculate its molar concentration ($\mathrm{C}_{\mathrm{F} 3}$). Show details on the graph paper and write the mass concentration and the calculation details for C_{F} in the box below. (2P)

- Question 1.2.7: Calculate the molar concentration of the unknown sample solution F3 (C C_{3}) using the molar extinction coefficient! Show your calculation details. (2P)

- Question 1.2.8: Calculate the corresponding molar concentrations $\mathbf{C}_{F 2}$ an $\mathbf{C}_{F 1}$ of the solutions F2 and F1. Show your calculation details. (5P)
\square

Problem 2 - Solve the carcinogen chaos (23 points)

- Table 2.1.1.: Fill in the following table with your observations for the CAN test (2.5P)

substance	Observation: formation of a red complex? Use the following symbols: $\checkmark \rightarrow$ Yes and $x \rightarrow$ No
control	
X1	
X2	
X3	
X4	

- Table 2.1.2.: Fill in the following table with your observations for the FeCl_{3} test (2.5P)

substance	Observation: colour of the solution changes? Use the following symbols: $\checkmark \rightarrow$ Yes and $\boldsymbol{x} \rightarrow$ No
control	
X 1	
X 2	
X 3	
X 4	

- Table 2.1.3.: Fill in the following table with your observations for the Brady test (2.5P)

substance	Observation: formation of a yellow to red precipitate? Use the following symbols: $\checkmark \rightarrow$ Yes and $x \rightarrow$ No
control	
X 1	
X 2	
X 3	
X 4	

- Table 2.1.4.: Fill in the following table with your observations for the Fehling test (2.5P)

substance	Observation: formation of a brick red precipitate? Use the following symbols: $\checkmark \rightarrow$ Yes and $\boldsymbol{x} \rightarrow$ No
control	
X 1	
X 2	
X 3	
X 4	

- Table 2.1.5.: Assign the unknown substances to their correct labels (X1 - X4).
substance
- Question 2.1.6.: Formulate the reaction scheme for the reaction of the given ketone with the Brady reagent (2P).

- Table 2.1.7.: Do the presented natural fragrances show a reaction with the presented tests?

Use the following symbols: $\checkmark \rightarrow$ Yes and $x \rightarrow$ No (3P)

	CAN test	FeCl_{3} test	Brady test	Fehling test

EMPTY PAGE

EVERY SCIENCE STARTS AT A NEW RECTO PAGE

Problem 3: lonizing radiation

Problem 3.1: Evidence for the existence of radon (23 points)

- Table 3.1.1.: Background activity \mathbf{A}_{0} (1P)

Measurements			Mean
A_{01} (counts/min)	A_{02} (counts/min)	A_{03} (counts/min)	A_{0} (counts/min)

- Table 3.1.2.: Activity as a function of time (8P)

Measurements				Mean	Effective activity
t (min)	A_{1} (counts/min)	A_{2} (counts/min)	A_{3} (counts/min)	$\mathrm{A}_{\text {mes }}$ (counts/min)	$\mathrm{A}=\mathrm{A}_{\text {mes }}-\mathrm{A}_{0}$ (counts/min)

You can "buy" measurement data of table 3.1.2. for 3 penalty points. In addition to the penalty points, $0 / 8$ points on table 3.1.2. Ask a supervisor!
Measurements bought: \qquad (signature of the supervisor) (-3 P)

- Graph 3.1.3.: Activity as a function of time (5 P)

On a sheet of graph paper, create a plot of the activity A as a function of time t for your balloon. Label the graph paper using the corresponding sticker.

- Question 3.1.4. (3P)

- Question 3.1.5. Tick (\checkmark) the cell(s) under the different nuclei. (2P)

Po-218	$\mathrm{Pb}-214$	$\mathrm{Bi}-214$	$\mathrm{Po}-214$	$\mathrm{~Pb}-210$	$\mathrm{Bi}-210$	$\mathrm{Po}-210$	$\mathrm{~Pb}-206$

- Question 3.1.6. (2P)

Balloon with diameter	d_{1}	d_{2}	d_{3}
Number of counts/min	100		

- Question 3.1.7. Tick (\checkmark) the cell(s) under the different nuclei. (2P)

Po-218	Pb-214	Bi-214	Po-214	Pb-210	Bi-210	Po-210	Pb-206

Problem 3.2: Law of distance (15 points)

- Table 3.2.1.: Dark current (1 P)

Current intensity in the dark $(\mu \mathrm{A}): I_{0}=$ \qquad

- Table 3.2.2.: Intensity as a function of distance (6P)

$d(\mathrm{~cm})$ Distance between lamp and phototransistor	$I(\mu \mathrm{~A})$ Intensity of current through phototransistor	$I_{L}(\mu \mathrm{~A})$ Intensity of current due to lamp light	
			$1 / d^{2}\left(\mathrm{~cm}^{-2}\right)$

- Graph 3.2.3.: Intensity as a function of $\mathbf{1 /} \boldsymbol{d}^{2}(4 \mathrm{P})$

On a sheet of millimeter graph paper create a plot of I_{L} as a function of $1 / d^{2}$. Draw a line through the measurement points in Graph 3.2.3. but only through the points that in a first approximation fulfil the quadratic law of distance. Use the provided graph paper and label it with the correct sticker (Graph 3.2.3.). Determine the minimum value $d_{\text {min }}$ for which the quadratic law of distance holds. Insert the value in Table 3.2.4

- Table 3.2.4.: Minimum distance for which the quadratic law of distanced holds (2P)
$d_{\text {min }}=$ \qquad
- Question 3.2.5. $\checkmark \rightarrow$ Yes (2P)

If instead of a point-like source, you were to use a planar light source and a detector pointing towards the plane, which of the following statements would be true? Tick ($\checkmark \rightarrow$ Yes) the correct cells!

The intensity would decay slower than with a point-like source	
The intensity would decay faster than with a point-like source	
The decay of the intensity is the same as for a point-like source	

Problem 3.3.: Absorption of radiation (12 points)

- Table 3.3.1.: Intensity as a function of the number of plates (3P)

Number of plates	$I(\mu \mathrm{~A})$ Intensity of current through phototransistor	$I_{L}(\mu \mathrm{~A})$ Intensity of current due to lamp light
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

- Graph 3.3.2.: Intensity as a function of the number of plates (3P)

On a sheet of graph paper, create a plot of I_{L} as a function of N, insert the extrapolation for the determination of $N_{1 / 2}$. Label the graph paper using the corresponding sticker.

- Question 3.3.3. (1P)

$N_{1 / 2}$

- Question 3.3.4.: (3P)

Sort the materials from 1 to 4 by how strongly they absorb gamma radiation. Mark the best absorber with 1 and the worst with 4 .

Iron	
Lead	
Glass	
Air	

- Question 3.3.5. Tick (\checkmark) the correct cell(s). (2P)

Imagine that a material for shielding radioactive radiation has a thickness $D_{1 / 2}=2 \mathrm{~cm}$ for absorbing half the radiation. Which of the following thicknesses is sufficient to reduce the radiation to less than 5% of its initial value?

8 cm	
9 cm	
7 cm	
10 cm	

EMPTY PAGE

EVERY SCIENCE STARTS AT A NEW RECTO PAGE

Problem 4 - Effect of UV light on cell growth

(16 points)

4.1 Experimental set-up and UV exposure

- Question 4.1.1.: Show your steps of the theoretical calculation. Round to one decimal place. (2P)
\square
- Question 4.1.2: Measured OD before the treatment:
4.2. Growth analysis by determination of OD600nm
- Table 4.2.1.: Fill in the table (4 P)

	0^{\prime}	30^{\prime}	60^{\prime}	90^{\prime}	Marks
OD sample 1					
OD sample 2					
OD sample 3					
OD sample 4					
				Total marks	

- Graph 4.2.2.: Using the graph paper provided draw the four different growth curves. (8 P)

Label the graph paper using the corresponding sticker.

- Question 4.2.3.: Optical density (1 P)

Letter(s) (A, B, C, D)	Marks

Why is the optical density (OD) measured at 600 nm ? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark.

A - The wavelength minimizes damage to the bacteria
B - The wavelength favours the growth of bacteria
C - A lower wavelength would not penetrate the solution
D - 600nm corresponds to the absorbance of proteins

- Question 4.2.4.: Sun protection factor (1 P)

Letter(s) (A, B, C, D, E)	Marks

What does SPF 50 mean? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark.

A - The skin is completely protected from UV radiation for 50 minutes
B - It allows only 2% of UV to pass through
C - It is the max sun protection we can use
D - It allows 50% UV to pass through after 1 hour
E-50 corresponds to the concentration of titan dioxide

Problem 5 - Effect of UV exposure on genetic material (34 points)

5. Effect of UV exposure on genetic material
5.1. Cell counting

- Question 5.1.1.: Counting slide set up (1P)
0.5 penalty points for using a $2^{\text {nd }}$ try

1st try	$\mathbf{2}^{\text {nd }}$ try		
		Validated Marks 	

- Question 5.1.2.: Picture of counting slide.
if no stamp present, then only a maximum of 1.5 P possible for 5.1.3

	Time:	
Stamp		Marks

- Table 5.1.3.: Report your cell counting results in the table below. Round to one decimal place for the average. (3P)

Count	Cells per grid 1	Cells per grid 2	Cells per grid 3	Cells per grid 4	Cells per grid 5	Average	Marks
Number of living cells							
Number of dead cells							
Total marks							

- Question 5.1.4.: What is the percentage of living cells? Round to one decimal place. (2P)

- Question 5.1.5.: What is the concentration of living cells in your tube "HC"? Round to two decimal places (5P)

- Question 5.1.6.: What is the total number of living cells in your tube "HC"? Round to two decimal places (1P)

5.2. Extraction of genetic material

- Question 5.2.1.: What is the role of the PM solution? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

Letter(s) (A, B, C, D)	Marks

A - To break down the cell membrane of the bacteria
B - To uncoil the DNA for the next step of the procedure
C - To prevent any damage to the DNA during the heating process
D - To amplify the DNA

- Table 5.2.2.: Write down the DNA concentration and OD260/OD280 ratio measured with the help of the Nanodrop (3 P)

DNA concentration	OD260/OD280 ratio	Stamp \& signature of supervisor
1		
2		
3		
4		
Total marks		

5.3 Preparation of samples for PCR

- Table 5.3.1.:

Calculate the volume of DNA and water that is required to have 400 ng of DNA in a $20 \mu \mathrm{~L}$ solution. Measure the DNA concentration afterwards using the Nanodrop. Round to one decimal place (4P)

	Required DNA volume ($\mu \mathrm{L})$	Required water volume ($\mu \mathrm{L})$	Measured DNA concentration $(\mathrm{ng} / \mu \mathrm{L})$	 Signature of supervisor
Sample 1				
Sample 2				
Sample 3				
Sample 4				
Total marks				

5.4. Preparation for gel electrophoresis

- Question 5.4.1.: What's the role of the loading dye? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1 P)

A - Make the sample visible in the gel
B - Facilitate the entry of the DNA in the agarose gel
C - It's a DNA staining dye
D - Keep the DNA at the bottom of the gel wells
E - Protect the DNA from the electrical current

Letter(s) (A, B, C, D, E)	Marks

- Question 5.4.2.: Loading of the gel electrophoresis (4P)

| Stamp
 Gel electrophoresis has been started. Start Time:
 Marks
 | |
| :--- | :--- | :--- |

5.5. Analysis of PCR results

- Question 5.5.1.: Gel migration drawing (5P)

Stamp Gel drawing has been given to the supervisor		Marks

- Question 5.5.2.: What will happen to the signals on the gel if you increase the volume of starting material in step 2, Problem 4.2? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

A - The signals on the gel will appear similar to the one you observe on the official result
B - The signals on the gel will appear stronger
C - The signals on the gel will appear lower
D - It will depend on the volumes used
E-It will depend on the cell concentration

Letter(s) (A, B, C, D, E)	Marks

- Question 5.5.3.: What will be observed in position X if you expose the bacteria for 40 minutes to UV radiation? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

A - The signal on the gel will appear similar to the one you observe on the official result
B - The signal on the gel will appear stronger
C - The signal on the gel will appear lower

Letter(s) (A, B, C)	Marks

- Question 5.5.4.: What could be observed for sample 3 if we would have used a sunscreen with a lower SPF such as SPF 15? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

A - The signal on the gel would have appeared similar to the one you observe on the official result

B - The signal on the gel would have appeared stronger
C - The signal on the gel would have appeared lower
D - The signal on the gel would have completely disappeared
E-It depends on the brand of the sunscreen

Letter(s) (A, B, C, D, E)	Marks

- Question 5.5.5.: How could you explain the result observed with sample 2? More than 1 correct answer may be possible. Points will be deducted for wrong answers but you can't get a negative mark. (1P)

A - UV radiation induce unspecific mutations on the whole DNA strain preventing any recognition of the DNA sequence by the PCR primers
$B-$ UV radiation induce nucleotide dimer formation preventing DNA reading by polymerase

C - UV radiation induce high denaturation of the cell DNA preventing DNA polymerisation
D - UV radiation depolymerize the DNA sequence
E - UV radiation impair the cell division

Letter(s) (A, B, C, D, E)	Marks

APPENDIX - 5.5.1. Expected PCR results

Draw the expected result of the gel electrophoresis.

Intensity of the signal

Use the following notation to indicate the intensity of the signal/bands.
The fewer diagonal lines there are in the box the weaker the signal.

